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ABSTRACT

In this paper, the radiation quality factor of cylindrical dielectric resonators has

the characteristic equation of the chosen mode in the complex plane. In all cases this

been evaluated by
Q factor is too low

for Dractical aDDlications. So in order to Drevent the losses by radiation we enclose the dielectric resonator in
L .1

a metallic cylindrical shield. For such a geometry the unloaded quality factor of the shielded resonator has been

calculated.

INTRODUCTION

In this paper, we present a study of the radiation
quality factor of free cylindrical dielectric resona-
tors. The resonators are isolated in free space and are

supposed to be free of dielectric losses. The electro-
magnetic resonance and the radiation quality factor of

a sphere and of tubular resonators have been studied by

some investigators {1} , {2} , {3} .

Our approach is based as those of Yee {1} and
Gastine {2} on the resolution of the characteristic

equation of dipolar mode in the complex plane.
From these results, it appears that the use of

dielectric resonators at microwave frequencies requires
a shield to prevent loss of energy by radiation {6} .
For the case of a dielectric cylindrical resonators we
have shown that the shield disturbs the resonant fre-
quency and the unloaded quality factor of the dielec-

tric resonator, except in the zone where the diameter
of the shield is two or three times that of the dielec-

tric resonator.

The radiation quality factor of the

TE
O,l,p

cylindrical resonator

. DefinitiQ~

To calculate the radiation quality factor Qr we
introduce the formalism of a complex radiamfrequency

w=w’+jw” (1)
where : WV : real pulsation of the mode considered, and
w“ an imaginary part which corresponds to losses.
u“ represents a damping constant.

In order to compute the radiation quality factor,

the dielectric is supposed to be lossless. The damping

must be attributed entirely to the loss of energy by
radiation. We may define the corresponding Q value for
this loss as :

u’
‘r’~

(2)

and this is called the radiation Q of the resonator.

To solve the problem of the radiation of a cylin–
drical resonator, it may be necessary to consider two
cases which depend on the value of the ratio D/H.

For low D/H, most of the radiation is transversal
so we introduce the complex pulsation ( 1) into the ei-

genvalu~ equation d~rived from the 2a approximation
(only the lateral surface is a perfect magnetic wall)

to obtain the Q factor due to the transverse radiation

Qrt.
For large D/H, most of the radiation is longitudi–

nal so we introduce the complex pulsation (1) into the
eigenvalue equation derived from the 2H approximation
(only the flat surfaces are perfect magnetic walls) to
obtain the Q factor due to the longitudinal radiation

Qrl”

The next step of the calculation will be to evalu-

at’e the radiation Q factor by taking into account that

all the surfaces of the dielectric resonator are imper-
fect magnetic walls. So, in order to approximate this,
we suppose that the resultant radiation Q(Qr) is given

by the following relation :

(3):r’&+&
The characteristic eguation for Qrl and Qrt. -----——-— ----------- __________

Consider an homogeneous, cylindrical dielectric re–
senator (height H, radius a, relative permittivity C2).

Qrt
: elzaraeteristie equat{on

If we assume that only the end flat surfaces satis-

fy the open circuit boundary conditions, the field com-

ponents are function of Bessel functions of the first
kind (Jn)and outside they depend on Hankel functions of

the second kind (%(2)). The continuity of the tangen-

tial components of--E.M. field at the separation surface
(r=a) leads to a characteristic equation which is com-

plex : /-,
Jo(kia) H’” (koa)

‘ia~=- ‘Oa H?2)
(4)

o (koa)

In this relation :

ko2 = - (:) 2 + # (5a)

(5)

kiz = (:)2 C2 -f? 2 (5b)

Here = ~ where H effective height of the resona–
e tor {4}e

1
c=— light velocity in vacum.

E ~ ‘JO

Qrl : elmraeteristie equation

If we assume that only the circular surface satis-

fies the open circuit boundary conditions (figure lb),
we obtain by applying the continuity solutions Dn the

separation surface the characteristic equation {4}

(6)
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with 62 = (;)2 E2 - kc2
(7)

a’ ~’ - (:)2=k
x

01
Here kc = ~ where a : effective radius of the

e
e resonator

x 01 first root of the Bessel function JO(X)=O

(8)

. Lateral radiation Q (Q ) : resolution of
‘E”the characteristic equa Ions (4)

Radiat<on G of z% TE
Olp

mode

We assume that u is a complex value, so the ra-
dial wave propagation may be written from (5a) and

(5b)
2

‘1
= (koa)2 =- ~2+ f32a2 (9)

2
= (kia) 2 =

‘2

‘2
(X - jY) ‘k32a2 (10)

—
{Z

w-here X - ~ (u’ + j.”)jY=a C (11)

and

Let us study some special cases obtained for a gi-
ven value of the relative permittivity E2.

. When koa + O From (4) we have J (k.a)+O and

kia + x The roots are real,
01 “

so no rad?at;on exists.

We find again the “confined” modes of the cylindrical

resonator of whose surfaces are perfect magnetic walls.

WhenO<ka<l. Using the approximations for

small arguments of? Hankel functions :

Ho (z)=l-~ jlog~ (12)

‘1 (z)=z/2-j+- (13)

and the development of Bessel functions given by :

with ~ = z -

m

P(n,z) = f

k=O

m

Q(n,z) = f

k=O

P(n, z) cOs X - Q(n,z) sinx }

(;++).

(-)
k (4n2, 2k)

(2z)*k

(-)
k (4n2, 2k+ I )

(2Z)
2k+ 1

{4} takes the following form ( 16)

AZ2(ITZ; - 4j)+ B z, 2(T -2j Log ~] = O

(14)

(15)

(16)

A = P(O, z2) (cos z2+sin Z2)-Q(0, Z2) (sin z2-cos z2)

B = P(l,z2)(sin Z2-COS z2)+Q(l,z2) (sin z2+c0s z2)

When koa >>]—. _

we can approximate

from (9) we have

koa by the value

(~a)2>>(&’and

(17)

=(X-jY)*+ ~a.—
‘1 2c2fl a

(17)

Substituting into (4) the approximations for large

arguments of Hankel functions :

r 2

n (z)= -ejx~ (l+j~)H (18)

and taking into account (14), (15) we shall have to

solve :
0

(X - jY)’
AZ2 - B{ ~e

~ f3a
-64 =0 (19)

For any k a and in particular for k a ,#13a which

is the practic~~case encountered in the”applications

of cylindrical resonator to filter,we have to use the
following development of Hankel function :

Hn(z) = v–~ {P(n. z) - jQ (n,.)} ;j~ (20)

with X, P(n,z), Q(n,z) givenby (14), (15)

Substituting ( 14) and (20) into (4) we have to sol-

ve :

.2A {P(l, zl)-j Q(l, zl)} tjzl{ P(O, zl)-j Q(O, z,)} =0 (*I)

For a given value of E2, and according to the va-

lue of koa, we solve one of the equations (16), (19),

(21) by means of a computer. The values of X and Y ob--
tained are substituted into (2) to obtain t’he varia-

tions of the transverse radiation quality factor Qrt as
a function of the ratio D/H which have been drawn on
curve I (s2=100) and on curve 2 (E2=38).

Special ease : Qr of the TEO, o mode

The pulsation u being a complex value we have sin-

ce B =0:

(22)‘1
=koa.x’jy.~ ( w’ + j w“)

q

‘2
=kia=X- jY=~@(w’+j @”) (23)

X and Y are solutions of the equation (4). In or--

der to solve this one we use the approximations for
large arguments of Hankel functions (18) and those of

Bessel functions given by the following formula (24) :

Jn(z) =
k

T
Ilz

cos(z–~- ;) (24)

For large E2 : there are two cases : when E2+ ‘W

the product kia is infinite and when E *
2

the pro--

duct kia is finite.
Ho (z,)

‘2
remains finite, ————— + O, the solutions of

H, (z,)

(4) are real . The separation surface (r=a) between die-

lectric and air is a perfect magnetic wall. We have
resonant confined modes {2] {3} .

.2 is infinite (when S2+ CO) HI ‘2) (z]) +0, the

solutions of (4) are complex. We have now nun confined
modes {2} ~} the Q factors of these are very low.

For any E2

To solve the problem in this case, we substitute
into (4) , JO(Z2) and J] (.2) by their values (14) and

(13) and M. (.l) and HI (zl) by their approximations

for small arguments ( 12) and ( ]3) . So we obtain a new

complex relation
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ced

The

tan

(25){-m+2j(Log~- logx+j:)}=o

with : I$=Ch Y {si n X{ P(O, Z2)-Q(0, Z2)} + . . . . . .

cos X {P(O, z2) + Q(O, z2)}}

RD=ChY {sin X {P(I,z2)+ Q(l,z2)}- . . . . .

cos X {P(1,z2) – Q(1,z2)}}

IN=Sh Y {sin X {P(0,z2)- Q(0,z2)}- . . . . . (26)

cos x {P(0,z2) + Q(0,z2)}}

ID=-Sh Y {sin X {P(I, z2)-Q(1, z2) + . . . . .

cos X {P(I, z2) + Q(I, z2)}}

The resolution of (25) and (26) allows the determi–

nation of X and Y and so the radiation quality factor.
On curve n03 we have drawn the variations of Qr as a
function of the relative permittivity of the sample E2.

Longitudinal radiation Qrl : zS@@2E_2!_~kC——-
characteristic eguation (6)———------------— ------

The complex value of the pulsation (1) is introdu–

into (6) :

2
U2= ( 6H) = (LjY)2-kc2H2= ur+j Ui

v2=(aH)2=kc2H2 - (X=jY)~ v + iv

x ‘2
r i

01
with k = —

ca
e

equation (G) can be split into two equations :

2
ur-tan u tanh Ui vi Ur + Ui vi

r

l+tan2ur tanhz u.
2

+ u.
2

u
1 r 1

(27)

(28)

tan2u tanh ui+tanh u. vi u - u. v.
r 1 r 1

21
(29)

1+tanzu r tanz u.
2

u + u.
1 r 1

These equations have been solved, with the values

of X and Y obtained, we have calculated the radiation Q
factor (Qrl) which varies with the value of the ratio

D/H. Curves n“l and n“ 2.

. Conclusion - Experimental results-— ----—--—--——————-

The resultant radiation quality factor is obtained

by substituting the value of Q

results (applied to the cases ~ F ~~3Zr1aZt;i~y~~)TZ

this approximation are given on curves n“l an n“ .
Some experimental results have been done, which

agree well with theoretical ones. We ha-~e listed these

results in the following table :

:E
2 ~ ‘mm ~ ‘mm ~ ‘xperimental ‘r ~*heOretical ‘r ~

: ---- :--——— : ---—— : ------------------ : ------------------ :

: 100: 10 : 5 : 80 76
: ---- : ----- : ----- : ---—-—-—-——-—-—-—- : ------------------ :

38: 10 : 5 : 30 28
: -—-— : --—-- : -—--- : -—-—-—-----—---—-— : ——---------------- :

: 100: 30 :10: 75 73

The unloaded quality factor of cylindrical

resonator placed in a cylindrical metallic

cavity

Considering the previous results concerning the

radiation quality factor of dielectric cylindrical re-
sonators and those of Pellegrin {5} it appears that

for practical applications, it is necessary to enclose

the dielectric resonator into a shield to prevent loss
of energy by radiation.

This shield must be placed sufficiently far from

the resonator, in order that the induced losses in the

metallic wall will not be too large.

The dielectric resonator (ae H ) is supposed to be
put in the center of the cylindrlca? closed shield

($=b height = L) as shown in_figure n“2.
The total stored energy Wt is made_of two parts :

the energy stored inside the resonator Wi and the ener–
gy stored outside fro. The latter consists only of the

energy in the standing wave between the resonator and
the walls of the cavity.

tit = iii+ ii. (30)

From these considerations, we can give the follo-

wing expression for the unloaded quality factor :

-&(iii . tan6d+Lti) (31)
-& ~ %0.

L

In this relation Q =(tandd)
–1

is the Q factor which
takes into account the ‘?osses of the dielectric material

S#e>,;;; Q>actor which takes into account the mean
Pm in the metallic walls

(32)

We calculate the fields induced by the dielectric

resonator into the walls of the shield ; this one being
a metallic cavity. For that the dielectric resonator is

represented by a small conducting loop. The equivalent
magnetic moment m is supposed to be distributed over

all the volume T of the resonator {5}
The energy quantities may be computed from the fol-

lowing relation : . .

(33)
.

with u = I when we calculate the energy stored outside

the sample (fio)and u = 2 w~en we calculate the energy
stor~dzinside the sample (Wi).

2(IJ PO

fii= ~ ma4eHo2{J~2(xol) + . . . . .
c .x

01
‘2He

sin i3H
(l- +)} (34)~) J12(xol)}{ ~ (1+

x e
01

The dielectric disk resonator has its axis along

the center line of the cylindrical cavity. Because of
the cylindrical symmetry, only circular electric modes

designated TEO m are excited by the dielectric resona-

tor. ,

The problem of excitation of a structure by a
current distribution has been studied {5 I . It is pos–

sible to evaluate the electric and magnetic fields com–
Donents outside the e.amule. They are exDressed as a su–
~erposition of the fiel~s Em ~ ;nd Hm n’ of the empty
waveguide. > >

E+=~amE~

E-=~bm Em-

H+=~a H+

(35) m (36)
H- = ~ bm Hm:

H . d~ (37)

H . dT
mn

(38)
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Knowing the field components we are able to evalua–
te the energy ~. and the power loss ~m in the metallic

walls of the cylindrical cavity.

0.405
4

<= —
4 ‘o ~o !

4 U4 ~Ho4{ md~ }2 K1 (39)

‘8X11

u

T .4 b4co,2B>K
~= 8 & U2 U: ITH04 {=

m xl]
L4 2 ‘ ’40)

+~J4

4
0 (X}l)(l +

!
-)} { mdT}2

G : metal conductivity.
m

KI = 3 log b - 4(COS 4.7 ci (2xII)- sin 4.7 si(2xl I))

- cos 9.4 ci(4x11)-sin 9.4 si (4.xll)

where ci(x) and si(x) are respectively integral cosinus
and sinus functions.

Substituting (39) and (40) into (32) we determine
~. This value is reported both those of ~ and tan Ad

Into (31) in order to find an expression for the un-
loaded quality factor Q .

With the aid of a ~omputer we have solved this ex-

pression, which gives the variations of the Q factor

as a function of the parameters of the shield. Curve n04
On this curve, we can note that :

if ~1, the Q factor obtained is the Q of the
?metallic c%ity entirely loaded by the dielec ric sam–

pie. The resonant frequency is that of the loaded cavity.

if 1.2< ~ <2.6 The Q factor does not vary rapid-

ly and it is eq~al about to Qd. The resonant frequency
is that of the dielectric resonator.

if ~ > 7 the Q factor is the unloaded quality

factor of the empty metallic cavity. The resonant fre-
quency is that of the empty cavity.

CONCLUSION

In this paper, we have studied the variations of

the radiation quality factor of a cylindrical resonator

as a function of D/H. From these results, it appears
that when the radiation quality factor is always very

low, the radiation is important, so it is not possible
to use a dielectric resonator in microwave devices wi-
thout shield. Radiation losses can be suppressed by mean

of a closed shield. When the dimensions of this shield

are correctly chosen, the losses will be essentially

those of the dielectric resonator itself. Then two ap-
plications can be envisased :

{1}

{2}

{3}

{4}

{5}

{6}

accurate determin~tion of microwave permittivity

o.E dielectric materials

realization of low insertion losses microwave
integrated filters.
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