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ABSTRACT

In this paper, the radiation quality factor of cylindrical dielectric resonators has been evaluated by
solving the characteristic equation of the chosen mode in the complex plane. In all cases this Q factor is too low
for practical applications. So in order to prevent the losses by radiation we enclose the dielectric resonator in
a metallic cylindrical shield. For such a geometry the unloaded quality factor of the shielded resonator has been

calculated.

INTRODUCTION

In this paper, we present a study of the radiatiom
quality factor of free cylindrical dielectric resona-
tors. The resonators are isolated in free space and are
supposed to be free of dielectric losses. The electro-
magnetic resonance and the radiation quality factor of
a sphere and of tubular resonators have been studied by
some investigators {1} , {2} , {3} .

Our approach is based as those of Yee {1} and
Gastine {2} én the resolution of the characteristic
equation of dipolar mode in the complex plane.

From these results, it appears that the use of
dielectric resonators at microwave frequencies requires
a shield to prevent loss of energy by radiation {6}

For the case of a dielectric cylindrical resonators we
have shown that the shield disturbs the resonant fre—
quency and the unloaded quality factor of the dielec-
tric resonator, except in the zone where the diameter
of the shield is two or three times that of the dielec-
tric resonator.

The radiation quality factor of the
TE cylindrical resonator
0,1,p

. Definition

To calculate the radiation quality factor Q_ we
introduce the formalism of a complex radiamfrequency
w= 0"+ jw" nH
where : w real pulsation of the mode considered, and
w" an imaginary part which corresponds to losses.
w" represents a damping constant.

L

In order to compute the radiation quality factor,
the dielectric is supposed to be lossless. The damping
must be attributed entirely to the loss of energy by
radiation. We may define the corresponding Q value for
this loss as : N

W
Q= 7 2

and this is called the radiation Q of the resonator.

To solve the problem of the radiation of a cylin—
drical resonator, it may be necessary to consider two
cases which depend on the value of the ratio D/H.

For low D/H, most of the radiation is transversal
so we introduce the complex pulsation (1) into the ei=-
genvalue equation derived from the 2, approximation
(only the lateral surface is a perfect magnetic wall)
to obtain the Q factor due to the transverse radiation
Qre-

For large D/H, most of the radiation is longitudi-
nal so we introduce the complex pulsation (1) into the
eigenvalue equation derived from the 2y approximation
(only the flat surfaces are perfect magnetic walls) to
obtain the Q factor due to the lomgitudinal radiation

er'

. The next step of the calculation will be to evalu—
ate the radiation Q factor by taking into account that
all the surfaces of the dielectric resonator are imper-—
fect magnetic walls. So, in order to approximate this,
we suppose that the resultant radiation Q(Qr) is given
by the following relation :

1

L S U
Qr Qrt er
. The characteristic equation for er and Qrt

(3

Consider an homogeneous, cylindrical dielectric re—
sonator (height H, radius a, relative permittivity 32).

Q

ot : characteristic equation
If we assume that only the end flat surfaces satis-
fy the open circuit boundary conditions, the field com—
ponents are function of Bessel functions of the first
kind (Jp)and outside they depend on Hankel functions of
the second kind (Hn(z)). The coneimuity of the tangen-—
tial components of E.M. field at the separation surface
(r=a) leads to a characteristic equation which is com=-
plex :

J (k,a) 19 (x a)
k.a ot _-- k a ——2 (4)
i Jl(kia) o H(Z)(k )
o o
In this relation :
2 2 2
k= - (D78 (5a)
) (5)
2 W 2
k" = (E? e, ~8 (5b)
Here = %E- where H  effective height of the resona-

e tor {4

C = ———— light velocity in wvacum.

er : characteristic equation

If we assume that only the circular surface satis-—
fies the open circuit boundary conditions (figure 1b),
we obtain by applying the continuity solutions on the
separation surface the characteristic equation {4}

8H

o
tan 23 (6)
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with B"=(2" e, -k
c 2 c
)
2 2 w2
a” =k, - )
X
ol
Here k = - where a : effective radius of the
¢ e resonator

x01 first root of the Bessel function Jo(x)=0
(8)

. Lateral radiation Q (Q : resolution of
the characteristic equaglons (%)

Radiation § of the TE mode

Olp

We assume that w is a complex value, so the ra-
dial wave propagation may be written from (5a) and
(5b)

vy 2
z% = (koa)2 = _ M).+ 6232 (9)
€
2
2= k@’ = @ in’ -l (10)
Ve
where X - jY =2 g (' + ju™ (n
and B = %1
e

Let us study some special cases obtained for a gi-
ven value of the relative permittivity €ye

. When k a >0 From (4) we have J (k.a)> 0 and
kia »—xol. The Toots are real, so no radiation exists.

We find again the "confined" modes of the cylindrical
resonator of whose surfaces are perfect magnetic walls.

. When 0 < k a < 1. Using the approximations for
small arguments og Hankel functions :

HO (z) =1 - % j log % (12)
B (2) =z/2-] frz (13)

and the development of Bessel functions given by :

32 =\|& { P(n,2) cosy - Qn,z) sinx } (14

: e N &
with y =z (2"'4)'"
o 2
k 4 2k
P(n,z) = E ) £—B_§E—l
k=0 (2z) (15)
vk (4a°, 2k+1)
Qn,z) = , () ~———§;:r"—-
k=0 (2z)
{4} takes the following form (16)
2 . 2, .. 2.
Azz(nzl 43)+ B z (r =23 Log 3?22 (16)
A =

P(O,zz)(cos zz+sin 22)-Q(0,22)(sin z,~cos 22)
B

P(],zz)(sin z,"cos z2)+Q(1,z2)(sin z,*tcos 22)

In this expression z
given by the relations (9;

When k a >>1
— 0 ——

and z, are respectively
and (710).

from (9) we have (Ba) >>(X JY)

we can approximate koa by the value (17)

435

=& "JY)
Zy = 28 B8 a an

Substituting into (4) the approximations for large
arguments of Hankel functions :

. 2
_—3ix [ 2 . hn"-1
H) (2) = e V7 2 a+3j 8z )

and taking into account (14), (15) we shall have to
solve

18)

con 2
Az, ~ B{(g-——lzl - Bt =0
262 Ba
For any k _a and in particular for k a #Ba which
is the practical case encountered in the applications
of cylindrical resonator to filter ,we have to use the
following development of Hankel function :

(19)

(2 =\ @2 - i @2} % (20)

with yx, P(n,z), Q(n,z) given by (14), (15)

Substituing (14) and (20) into (4) we have to sol-
ve @

24 {P(l,zl)-jQ(l,zl)} +jz]{ P(O,zl)—jQ(O,z])} =0 (21)

For a given value of €,, and according to the va-
lue of k_a, we solve one of“the equations (16), (19),
(21) by means of a computer. The values of X and Y ob-
tained are substituted into (2) to obtain the varia—
tions of the transverse radiation quality factor Q_ _ as
a function of the ratio D/H which have been drawn on
curve 1 (€2=100) and on curve 2 (€2=38).

010 mode

The pulsation w being a complex value we have sin-
ce B =0 :

Special case : Q, of the TE

2 =ka=2"dLo2 (g4 (22)
(o) /€2
. a .
zy = kja =X~ j¥="27e, (0 + ] o (23)
X and Y are solutions of the equation (4). In or-

der to solve this one we use the approximations for
large arguments of Hankel functions (18) and those of
Bessel functions given by the following formula (24)

2 nm
Jn(z) “\/_E cos (z - v

For large ¢, : there are two cases : when g,> =
the product k.a 1s infinite and when ke theé pro-
duct kla is finite.

(24)

B (z,)

. .. [¢) 1

z, remains finite, —
B ()

(4) are real. The separation surface (r=a) between die-

lectric and air is a perfect magnetic wall. We have

resonant confined modes {2} {3} .

- 0, the solutions of

z., is infinite (when 82»-W) H](z) (z]) =0, the

2
solutions of (4) are complex. We have now non confined
modes {2} {3} the Q factors of these are very low.

For any €,
To solve the problem in this case, we substitute

into (4), Jo(ZZ) and J](ZZ) by their values (14) and
(15) and H, (zl) and H,

for small arguments (12) and (13).
complex relation

(Zl) by their approximations

So we obtain a new



Ta
Q;:% ~43)  (RHT e,z (Rp+IL)) ~evenenn.
€2 2vEl

{ - 7+25( Log - log X + 3 Xi % =0 (25)
with : R=Ch ¥ {sin X{P(0,2)-Q(0,2,)} + ......
cos X {P(O,zz) + Q(O,zz)}}
R =Ch Y {sin X {P(1,22)+ Q(l,zz)}— .....
cos X {P(l,zz) - Q(l,zz)}}
I=Sh Y {sin X {P(0,2z))= Q(0,z,)}~ ..... (26)

cos X {P(O,zz) + Q(O,zz)}}

I,==Sh Y {sin X {P(l,zz)-Q(l,zz) o
cos X {P(],zz) + Q(l,zz)}}

The resolution of (25) and (26) allows the determi-
nation of X and Y and so the radiation quality factor.
On curve n°3 we have drawn the variations of Q_ as a
function of the relative permittivity of the sample €q-

. Longitudinal radiation Qr : resolution of the
characteristic equation (6)

The complex value of the pulsation (1) is introdu-
ced into (6)

u2=(BH)2 = (X_jY)z—kCZH2= ur+j Uy

< 2 @n
V2=(0LH) 2=kC2H2 - _(X_—JY)..,: v_ o+ jv,
€ r i
X 2
. o1
with k =
c
e
The equation (§) can be split into two equations
tan u_-tan u tanh2 u, V. u_ +u, v,
r r i ir i i
2 2 T3 2 28
l+tan"u_ tanh wu, u + u,
T i T i
2
tan"u_ tanh u,+tanh u. V. u_ - u, V.
r i i ir i i
= (29)
2 2 2 2
l+tan"u_ tan u. u + u,
r i T i

These equations have been solved, with the values
of X and Y obtained, we have calculated the radiation Q
factor (Q _.) which varies with the value of the ratio
D/H. Curves n°l and n° 2.

. Conclusion — Experimental results

The resultant radiation quality factor is obtained
by substituting the value of Qr and Q into (3). The
results (applied to the cases o% €,=38 "and €,=100) of
this approximation are given on curves n°l and n°2.

Some experimental results have been done, which
agree well with theoretical ones. We have listed these
results in the following table :

ey ¢ Do m f experimental Qr ftheoretical Qr 3
: 100: 10 ¢ 5 : 80 : 76
¢ 38: 10 : 5 30 : 28
: 100: 30 ¢ 10 75 H 73 H
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The unloaded quality factor of cylindrical
resonator placed in a cylindrical metallic
cavity

Considering the previous results concerning the
radiation quality factor of dielectric cylindrical re-
sonators and those of Pellegrin {5} it appears that
for practical applications, it is necessary to enclose
the dielectric resonator into a shield to prevent loss
of energy by radiation.

This shield must be placed sufficiently far from
the resonator, in order that the induced losses in the
metallic wall will not be too large.

The dielectric resonator (a_ H ) is supposed to be
put in the center of the cylindr?cai closed shield
(¢=b height = L) as shown in figure n°2.

The total stored energy W is made of two parts
the energy stored inside the resonator W. and the ener-
gy stored outside W_. The latter consists only of the
energy in the standing wave between the resonator and
the walls of the cavity.

W o=W+W
i

t o (30)

From these considerations, we can give the follo-
wing expression for the unloaded quality factor :

1

1 — 1 =
= —— (W. . tan &, + — W ) (31)
Q wt 1 d Qm o

In this relation Q =(tan6d)_lis the Q factor which
takes into account the ?osses of the dielectric material
and the Q factor which takes into account the mean

power loss ?; in the metallic walls
— = -
Q=w (WO).(Pm) (32)

We calculate the fields induced by the dielectric
resonator into the walls of the shield ; this one being
a metallic cavity. For that the dielectric resonator is
represented by a small conducting loop. The equivalent
magnetic moment m is supposed to be distributed over
all the volume T of the resonator {5}

The energy quantities may be computed from the fol-
lowing relation :

(¢}

€
W o= EX du (33)
u 2 E, u u
with u = 1 when we calculate the energy stored outside

the sample (W )and u = 2 when we calculate the energy
storedzinside the sample (Wi).
207
[ 4 - 2,..,2
iS55 ma JH {J] (Xol) * e
¢ .x
ol e H

i sin BH
(1-

2 27e e
Z)Jl (Xol)}{ 5 (1+ ————Eﬁgﬂ}(34)

o1

The dielectric disk resonator has its axis along
the center line of the cylindrical cavity. Because of
the cylindrical symmetry, only circular electric modes
designated TEO n 2Te excited by the dielectric resona-
tor. ’

The problem of excitation of a structure by a
current distribution has been studied {5} It is pos—
sible to evaluate the electric and magnetic fields com—
ponents outside the sample. They are expressed as a su—

perposition of the fields Em and Hm n of the empty
waveguide. ’ ’
+ 7 + + +
E =) a E H = z a B
. T (35) N € 1)
E = - =
b, E B =7b ~ H_
with jumg
a = f m B . dr (37)
jou
bmn = J m Hmn .dr (38)



Knowing the field components we _are able to evalua-
te the energy W and the power loss P in the metallic
walls of the cyllndrlcal cav1ty

—  0.405 & 4 b 2
o= —4 RIS — i {J mdt }° K, (39
18x
4 4
P = 8 wu wz u ﬂH 4 =z E—-coszﬁ Ly (40)
i & 2
X L
11
bL _ 4 sin BL
Pt p (e S (fa a0’
o ¢ metal conductivity.

K1 =3 log b - 4(cos 4.7 ci (2x11)- sin 4.7 si(2x11))

- cos 9.4 ci(4xll)—sin 9.4 si (4.x11)

where ci(x) and si(x) are respectively integral cosinus
and sinus functioms.
Substituting (39) and (40) into (32) we determine
. This value is reported both those of W, and tan §
into (31) in order to find an expression for the un-
loaded quality factor Q .
With the aid of a computer we have solved this ex-
pression, which gives the variations of the Q factor
as a function of the parameters of the shield. Curve n°4
On this curve, we can note that

if §=1, the Q factor obtained is the Q_ of the
metallic cavity entirely loaded by the dielectric sam—
ple. The resonant frequency is that of the loaded cavity.

if 1.2< b-<2 6 The Q factor does not vgry rapid-

1y and it is equal about to Q,. The
is that of the dielectric resonator.

resonant frequency

unloaded quality
The resonant fre-

.. b .

if 2 > 7 the Q factor is the
factor of the empty metallic cavity.
quency is that of the empty cavity.

CONCLUSTON

In this paper, we have studied the variations of
the radiation quality factor of a cylindrical resonator
as a function of D/H. From these results, it appears
that when the radiation quality factor is always very
low, the radiation is important, so it is not possible
to use a dielectric resonator in microwave devices wi-
thout shield. Radiation losses can be suppressed by mean
of a closed shield. When the dimensions of this shield
are correctly chosen, the losses will be essentially
those of the dielectric resonator itself. Then two ap-—
plications can be envisaged :

accurate determination of microwave permittivity
of dielectric materials

. realization of low insertion losses microwave

integrated filters.
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